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Effect of aging on network structure
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In network evolution, the effect of aging is universal: in scientific collaboration network, scientists have a
finite time span of being active; in movie actors network, once popular stars are retiring from stage; devices on
the Internet may become outmoded with techniques developing so rapidly. Here we find in citation networks
that this effect can be represented by an exponential decay factor,e2bt, wheret is the node age, while other
evolving networks~the Internet, for instance! may have different types of aging, for example, a power-law
decay factor, which is also studied and compared. It has been found that as soon as such a factor is introduced
to the Barabasi-Albert scale-free model, the network will be significantly transformed. The network will be
clustered even with infinitely large size, and the clustering coefficient varies greatly with the intensity of the
aging effect, i.e., it increases linearly withb for small values ofb and decays exponentially for large values of
b. At the same time, the aging effect may also result in a hierarchical structure and a disassortative degree-
degree correlation. Generally the aging effect will increase the average distance between nodes, but the result
depends on the type of the decay factor. The network appears like a one-dimensional chain when exponential
decay is chosen, but with power-law decay, a transformation process is observed, i.e., from a small-world
network to a hypercubic lattice, and to a one-dimensional chain finally. The disparities observed for different
choices of the decay factor, in clustering, average node distance, and probably other aspects not yet identified,
are believed to bear significant meaning on empirical data acquisition.
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I. INTRODUCTION

Recently, the computer-aided data acquisition has led
an explosion of interest in probing the complex network s
tems@1–3#. So far, many of the various networks in realit
such as the World Wide Web@4#, social networks@5#, and
biological networks@6#, etc., are believed to share the fo
lowing characteristics@1–3,7,8#: ~1! a small, relative to their
large size, average distance between nodes;~2! a power-law
degree distribution, often followed by a truncation; and a~3!
highly clustered,~4! hierarchical, and~5! correlated structure
~explanations see below!. Besides, there are many other fe
tures that are often not as readily apparent and much
well understood consequently.

Aimed at a theoretical description of these findings,
Watts-Strogatz small-world model@9# is useful for systems
that are largely regular, and presents properties~1! and ~3!
listed above. Meanwhile the Barabasi-Albert~BA! scale-free
model @10# satisfactorily characterizes most of the networ
where geological distance is not so important. It consid
growth and preferential attachment irrespective of distan
with properties~1! and ~2! as outcome. We may notice tha
in this model, properties~3! and~4! are still missing@7#, and,
as is shown below, a neutral degree-degree correlatio
predicted for large degrees~the degree of a node is defined
the number of the its links!. This may be due to the highly
simplified assumptions of the model. To develop these
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well-established models, theoretical effort has just begun
In the generalization of the BA model, many novel a

realistic aspects have been investigated in the past few y
@1,3#. It is now known that degree distribution in reality ma
deviate from a pure power law. According to the extent of t
deviation, the distribution patterns may be categorized i
three groups@11#: scale-free~power law!, broad scale~power
law with a sharp cutoff!, and single scale~fast decaying!. In
order to explain this deviation, the effect of aging and
consequent loss of activity have been introduced@11–14#.
This is a common mechanism in reality1 and, combined with
the BA model, it results in a tunable truncation of the pow
law @11,12#, i.e., the degree distribution can be turned fro
scale-free with no aging to broad-scale with slow aging a
the single-scale with fast aging. This finding justifies furth
investigation of its influence on the structure and function
networks, which is the aim of the present work.

This paper is organized as follows. In Sec. II, we provi
empirical evidence and quantify the aging effect in a mod
which reduces to the BA network when the aging effect va
ishes. In Sec. III, the effect of aging on network structure
described in four aspects: clustering~Sec. III A!, hierarchical

ent

1This effect can be, for example, pictured for the network of a
tors ~the actors are linked if they both appear in the cast of o
film!. The more famous an actor is, the more chances he will h
to act in new movies. But, however famous he may be, every
will become gradually inactive as time passes. This is also s
ported by the citation rate data of the years 1987–1998@14,15#, as
shown in Fig. 1. Except for the first three years prior to the pub
cation year, the citation rate gradually decreases with age.
©2003 The American Physical Society21-1
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structure~Sec. III B!, degree correlation~Sec. III C!, and the
average distance between nodes~Sec. III D!. As the intensity
of the aging effect grows, in most cases we witness a c
tinuous transformation of the network structure, while the
are also a few abrupt changes. Finally, Sec. IV is the su
mary with some discussions.

II. THE MODEL

As the first step, we give the definition of the model wi
a tunable effect of gradual aging. At each time step, a ne
added node is attached tom existing nodes, with the prob
ability proportional ~1! to the degreek of the considered
node, as in the BA model and~2! to a simple functionf (t),
wheret is the age of the considered node. Thus the evolu
of the network can be approximately characterized by
following equation:

]k~ t i ,T!

]T
5

mk~ t i ,T! f ~T2t i !

(
t

k~ t,T! f ~T2t !

, ~1!

wherek(t i ,T) denotes the expected degree at timeT of the
node born att i , and ( tk(t,T) f (T2t) is the normalization
factor.

If f (t)51, the probability that an existing node receiv
new links becomes solely proportional to its degree, and
model reduces to the BA model@10#,

]k~ t i ,T!

]T
5

mk~ t i ,T! i

(
t

k~ t,T!

5
k~ t i ,T!

2T
, ~2!

where we have used the fact that the normalization fa
( tk(t,T)52mT. On the other hand, whenf (t) decays fast
enough, we assume that the normalization fac
( tk(t,T) f (T2t) reaches an asymptotic nondivergent va
in the limit of infinite network size. Thus, the expected d
gree of a given node grows as

]k~ t i ,T!

]T
5

k~ t i ,T! f ~T2t i !

M
, ~3!

where M5(1/m)( tk(t,T) f (T2t). To test its validity and
obtain the factorf (t), we apply this model to the scientifi
citation web@14–18#, a rather complex network formed b
the citation patterns of scientific publications, with the nod
standing for published articles and a directed edge repres
ing a reference to a previously published paper.

Figure 1 shows the citation rate data of the years 198
1998@14,15# obtained from the ISI database. The number
papers published in each year@Fig. 1~a!# is approximately
stable~as we have assumed!, and, in order to further get rid
of the fluctuation, we use a set of relative values,F1987→1998,
F1988→1998, . . . , F1998→1998, i.e., of the papers published i
1987,1988, . . . ,1998, the fraction that is cited in 1998. The
we reinterpret them as the following: each time step co
sponds to a year, and as soon as a node is introduced i
Yth step, its initial degree is taken asF1998→1998; within step
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(Y11), the degree increases byF1997→1998; . . . within
step (Y111), it increases byF1987→1998, to finally
( i 51987

1998 Fi→1998. Thus we can approximately obtain bo
dk(t)/dt and k(t) as a function of time. Thenf (t) can be
calculated as@1/k(t)#dk(t)/dt, and it is shown to be propor
tional to, approximately,e20.28t @Fig. 1~b!#. In the following
we shall choose the factor to be

f ~t!5e2bt, ~4!

whereb is a tunable parameter. This particular measurem
does not exclude other functions, such ast2n @12,13#, as
possible choices. They are also studied, and found to y
similar results in most respects~while several interesting dif-
ferences are highlighted below!.

In the following we show how structural properties can
changed by the aging effect introduced in the way quantifi
above.

FIG. 1. ~Color online! ~a! The scientific citation web formed by
papers~nodes! and citations~directed bonds!. The open squares
correspond to papers published in each year between 1987 and
and the solid squares correspond to citations made in 1998
referring to papers published in a given year@15#. The data have
been extracted from the ISI database@16#. The average number o
citations in a paper published in a given year received in 19
which is actually a ratio of the other two curves, is shown in d
monds.~b! The natural logarithm of the calculated functionf (t)
5@1/k(t)#dk(t)/dt versus time stept ~solid circles!. The linear fit
~solid line! corresponds to an exponential decaye2bt, with the
exponentb50.283 53.
1-2
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III. TRANSFORMATION OF NETWORK STRUCTURE

In this section, we study the transformation of netwo
structure by the aging effect. First of all we pay attention
the mostly studied property of complex networks, the ver
degree distribution. It is well known that the aging effe
may result in a transformation of the degree statistics, fr
scale-free with no aging, to broad scale with slow aging a
to single-scale with fast aging@1,3,11,12#. The detailed ana-
lytical and numerical study of evolving networks wit
power-law aging that supports this idea can be found in R
@12#. Here, with exponential aging, we have also found
numerical simulations a very similar process.

It may be interesting to turn to the empirical results of t
citation web. In Ref.@17#, the network formed by paper
citing each other in Physical Review D has been studied
the degree distribution significantly deviates from a pow
law in the range of relatively small degrees. In Ref.@18#, the
study has been extended to the out-degree distributions o
networks formed by papers in a variety of journals. The d
tributions have a maximum at intermediate out degrees,
lowed by an exponential tail for large out degrees~single
scale!. These pictures actually can be reproduced by tun
the decay factorb from small to large. The similar effect ca
be found in some figures of Refs.@11,12#.

In the following, we report the investigation of networ
structure transformation by aging effect in four aspects: c
tering, hierarchical structure, degree correlation, and ave
node distance.2 The definitions and a brief review of releva
results can be found in the head of each section.

A. Clustering

A useful tool to characterize the network structure is
clustering coefficientC, which is defined as the averag
probability that a pair of nearest neighbors of a given nod
also connected. For example, if the nodei haski links, and
among itski nearest neighbors there are« i edges, then the
clustering coefficient of the nodei is defined by

Ci5
2« i

ki~ki11!
.

The clustering coefficient of the whole network is given
the average value. A common property of, for example,
cial networks is that cliques form, i.e., friends of yours a
much more likely to be friends of each other than peo
selected at random, thus resulting in a high clustering co
ficient. In the BA model, with the highly simplified assum
tions,C decreases with system sizeN as (lnN)2/N @20#. It is

2On completion of this work, we have noticed that in Ref.@19# ,
Vazquezet al. have investigated the deactivation model in simi
aspects. Actually, the deactivation model, just like the pres
model, can be viewed as a specific kind of aging effect. Howe
here we study gradual aging and in most cases a gradual tran
mation process is demonstrated by tuning the parameter. At
same time, there are some important different results, e.g., t
concerning the small-world effect.
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significantly lower than actual measurement, which is to
high degree unaffected by the system size@1#.

Our study of the aging effect on network structure beg
with the investigation of clustering. Figure 2 shows seve
typical curves of the clustering coefficientC(N) as a func-
tion of network sizeN. As aging gradually grows, we ob
serve an interesting transformation process, which can
roughly separated into several stages.~1! b50: The network
reduces to the BA model andC decreases to finally 0 as th
system grows.~2! 0aba1023: Now a slight aging effect is
introduced, andC is significantly lowered given a relatively
small system size, but, when the size grows, this gap is c
tracting. ~3! 1023aba1021: As aging is becoming more
and more manifest,C is greatly enhanced. Given a relative
small system size, it may still be lower than the value o
tained in a nonaged network of the same size. However, w
a much lower rate of decreasing, it quickly exceeds t
nonaged value after reaching a crosspoint. As the sys
grows larger, the curve is becoming increasingly flat andC
finally approaches a stable value.~4! As b continues to grow,
this asymptotic value is quickly rising, as shown by the cur
at b50.5. After a certain peak is reached, it quickly fal
back to finally zero.

In the following we analyze our observations. In ne
works, clustering is determined by a competition of orde
ness and randomness. In the BA model, newly added no
are more likely to be linked to earlier introduced node
which generally have more links. This orderliness, howev
is weakened by the increasing randomness as the netw
size grows, thus resulting in a vanishingC. When the aging
effect is considered, the old nodes gradually lose their ac
ity in network function and growth. For a newly added nod
it is more probable to be linked with a temporally clos
node, thus forming a chainlike structure on the large sc
The region which a given node may be linked with is of

t
r,
or-
he
se

FIG. 2. ~Color online! The clustering coefficient as a function o
system sizeN, in the model described in text, withb50 ~squares!,
1023 ~circles!, 1022 ~upward triangles!, 0.1 ~leftward triangles!, 0.5
~downward triangles!, and 7.7~diamonds!. Each newly added node
is linked to three existing nodes~also in all the following simula-
tions!. The data points correspond to system sizes varying from
to 20 000, and each is obtained as an average of many indepen
runs.
1-3
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finite effective size, however large the whole network m
actually be. This may explain why theC(N) curve quickly
reaches a stable value when the aging effect is conside
Different from the prediction of the BA model, this stab
value is finite even with a vanishingly smallb. Now we
explain how and why this value varies with the intensity
the aging effect. In an aged network, while the global ra
domness as a result of the large network size is absent
orderliness that older nodes receive more links is also lac
The clustering coefficient of a given node is now determin
by the structure of its neighboring region. When the ag
effect is very weak, the size of this region is relatively lar
and there is an even distribution of the probability that
considered node is connected with a given member of
region. The randomness caused by such an even distribu
results in a small value ofC. As the aging effect grows, th
size of this region contracts and the probability distributi
becomes more concentrated. Thus the randomness is in
ited, andC is significantly enhanced. However, with ve
strong aging effect,C diminishes as the probability distribu
tion becomes increasingly centralized. Finally,C approaches
zero when each node can be linked only with the node in
duced right before it.

The analysis above can be quantified by an approxim
calculation of the asymptotic clustering coefficientC(b) as a
function of b. The details can be found in the Appendix a
the result

C~b!5
6m3

2m~2m21!
e2b

~12e2b!3

~12e22b!2
, ~5!

in comparison with the simulation, is shown in Fig. 3. Fro
Eq. ~5! we can see thatC(b) increases linearly withb for
small values ofb, and decays ase2b for large values ofb.

When we compare the two decay factorse2bt and t2n,
there is an interesting observation. In a network of 10 0
nodes, we measure the average clustering coefficientC1 of

FIG. 3. ~Color online! The analytical result of the asymptoti
clustering coefficient of an infinitely large network,C(b), as a
function of b ~line!, in comparison with the simulation~squares!
results. Herem53 and the network sizeN520 000 in the simula-
tion.
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the first half andC2 of the second half~each containing 5000
nodes!, respectively. Whene2bt is chosen, two sets of ap
proximately equal values are obtained; however, whent2n is
chosen,C2 equalsC1 only with strong or weak aging, and in
the middle groundC2 is significantly lower~Fig. 4!. This
interesting disparity justifies further investigation and me
surement in the study of real networks.

This finding also reminds us that, on empirical data acq
sition, the effect of aging plays a crucial role, since resear
ers often have a limited access to the whole system, and
probably consider the most recently grown part. Whet
such a limited investigation can correctly represent the ov
all system may strongly depend on the type of the ag
effect.

B. Hierarchical structure

Now we go beyond the average clustering coefficient a
calculateC(k) as a function ofk. Here C(k) denotes the
expected clustering coefficient of a node withk degrees.3 For
complex networks, this relationship is often of much sign
cance because it is a useful tool to inspect the intrinsic h
archy of the topology. In the following we briefly discuss th
physical ground and then present our results with the ag
effect.

In reality, networks are often fundamentally modul
@6,7#: nodes have a tendency to combine into subgroup
which they are highly interconnected but have relatively f
links to nodes outside. For example, in society such gro
may represent families, and in World Wide Web they c
denote communities with shared interests. Numerous s
groups then constitute the whole system in a hierarch
manner. In some way the network might look like a frac

3The method of our simulation is as follows. In each of the ma
independent runs, after a network is generated, the degreek and the
clustering coefficientC of each node is measured. Then we calc
late the averageC of the nodes that have degreek. Finally, the
results are further averaged over the independent runs.

FIG. 4. In a 10 000-node network with the decay factor chos
to bet2n, the ratio of the average clustering coefficientC2 of the
second half andC1 of the first half, as a function ofn.
1-4
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EFFECT OF AGING ON NETWORK STRUCTURE PHYSICAL REVIEW E68, 056121 ~2003!
graph @21# ~see Fig. 1 of Ref.@7#!. This structure can be
characterized quantitatively by a simple scaling law:C(k)
;k2g @7,21#. The coefficientg has been measured to b
approximately 0.75 on the Internet at the autonomous sys
level @22,23#.

When no aging effect is considered, the BA model do
not show such a property and we expect to observeC(k) as
a horizontal line subject to fluctuations@7#. As aging is
gradually introduced, we observe a descending slope em
ing first at the leftmost part of the curve~Fig. 5!. It becomes
increasingly manifest until the scaling law is completely o
served. The rate of the slope remains around 0.75 in
whole process. In this specific model, this value is indep
dent of the intensity of the aging effect. This scaling la
clearly indicates that a hierarchical structure is produced
the aging effect.

C. Degree correlation

In the following we discuss the aging effect on th
degree-degree correlation@8# ~or the mixing pattern, as it is
sometimes called!. For convenience we shall call a node wi
k degrees aD2k node.

The degree correlation of nearest neighboring nodes i
important generic property of networks. It can be quantifi
by the probability matrixP(k,knn), i.e., the probability that a
D2k node is connected with aD2knn node. However, in
reality, with the available empirical data, a direct plot
P(k,knn) often results in a noisy picture difficult to interpre
An equivalent choice@22# is to measure instead the neare
neighbors’ average degree of theD2k nodes, ^knn&k
5(knn

knnP(k,knn), as a function ofk. Following Newman’s
idea @8#, if the high degree nodes in a network tend to co
nect to the low~or other high! degree nodes, then we have
disassortative~or assortative! mixing pattern; if there is no
obvious bias, then we have a neutral mixing pattern a
^knn&k5^k2&/^k&, a value independent ofk.

Before we discuss the correlation patterns with the ag
effect, we provide results of the BA model for compariso

FIG. 5. ~Color online! The ln-ln plot of the clustering coefficien
C(k) versus the connectivityk, with b50.01 ~squares!, 0.1
~circles!, 0.2 ~upward triangles!, 0.3 ~downward triangles!, 0.4 ~dia-
monds!, 0.5 ~crosses!, and the system sizeN510 000. The solid
line is a power-law decayk2g, with the exponentg50.75.
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In Ref. @24#, Krapivsky and Redner have obtained in the B
model a useful characterization of correlation,Nkl(t), i.e.,
the number ofD2k nodes that attach to aD2 l ancestor.
Asymptotically,Nkl(t)→tnkl , and

nkl5
4~ l 21!

k~k11!~k1 l !~k1 l 11!~k1 l 12!

1
12~ l 21!

k~k1 l 21!~k1 l !~k1 l 11!~k1 l 12!
. ~6!

Here we consider undirected links and studyNkl8 5Nkl

1Nlk , the number ofD2k nodes that arelinked with a D
2 l node. Asymptotically,

Nkl8 /t→nkl8 5nkl1nlk .

The probability that a nearest neighbor of aD2k node is
D2knn is

~Nk,knn
1Nknn ,k!Y (

knn

~Nk,knn
1Nknn ,k!,

and the average degree of the nearest neighbors of thD
2k nodes is

^knn&k5

(
knn

knn~Nk,knn
1Nknn ,k!

(
knn

~Nk,knn
1Nknn ,k!

→
(
knn

knn~nk,knn
1nknn ,k!

(
knn

~nk,knn
1nknn ,k!

. ~7!

We show it approximately in Fig. 6~a! by taking the summa-
tion of knn to 1.53105 and 23106 ~with normalization sat-
isfied! respectively, in comparison with the simulation resu
at N5100, 1000, and 10 000. It is found that nodes w
large k show no obvious biases in their associations. B
there is a short disassortative mixing region whenk is rela-
tively small.

Now we introduce a tunable aging effect. With the para
eter b taking different values, the ln-ln plots of^knn&k are
shown in Fig. 7~a!. Whenk is relatively small, they all de-
scend linearly with approximately the same slope. This in
cates that in this region̂knn&k decays as a power law,k2l,
and the exponentl is largely independent of the intensity o
the aging effect. But they show different trends ask in-
creases.~1! For small values ofb @b50.01 and 0.1 in Fig.
7~a!#, the curves become flatter ask increases.~2! For largeb
@b50.4 and 0.5 in Fig. 7~a!#, the power law is truncated with
a fast decaying tail.~3! In the middle ground@b50.2 and 0.3
in Fig. 7~a!#, the power law is maintained. To conclude, th
aging effect, possibly above a certain intensity, leads t
disassortative mixing pattern.
1-5
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FIG. 6. ~Color online! Degree-degree correlations in the B
model without aging.~a! Average degreêknn& of the neighboring
nodes of theD2k nodes as a function ofk. There is no aging effec
andb50. Squares, circles, and upward triangles correspond to
simulation results with system sizeN5100, 1000, and 10 000, re
spectively. The dashed line and the solid line represent the the
ical results withknn up to 1.53105 and 23106, respectively.~b!
Degree distributions of the nearest neighbors ofD23 nodes
~squares! andD220 nodes~circles!, respectively. The dashed line
are the corresponding theoretical results. The solid line with sl
22 serves as a guide to the eye.~c! The probability matrix
P(k,knn). In both ~b! and ~c!, system sizeN510 000.
05612
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FIG. 7. ~Color online! Degree-degree correlations with agin
effect.~a! The ln-ln plot of^knn&k versusk, atb50.01~squares!, 0.1
~circles!, 0.2 ~upward triangles!, 0.3 ~downward triangles!, 0.4 ~dia-
monds!, and 0.5~leftward triangles!, with system sizeN510 000.
The solid line corresponds to a power-law decayk2l, with the
exponentl50.183. ~b! Degree distributions of the nearest neig
bors of D26 nodes~circles! and D214 nodes~squares!, respec-
tively. ~c! The probability matrixP(k,knn). Both ~b! and ~c! are
obtained withN53000.
1-6
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EFFECT OF AGING ON NETWORK STRUCTURE PHYSICAL REVIEW E68, 056121 ~2003!
To explain the emergence of this mixing pattern, we
rectly study the probability matrixP(k,knn). In the BA
model, Fig. 6~b! shows two characteristic distributions of th
probability that a nearest neighbor of aD2k node is D
2knn . They are shown to be declining as approximatelyknn

22

for large knn , which is a sign of neutral mixing since th
probability of finding aD2knn node in the network is ap
proximatelyknn

23 @10,24#. It also leads to the conclusion tha
^knn& will diverge for infinite network sizeN as lnN, since
the largest possible value ofk;N1/2 @10#, and approximately

^knn&;

E
1

AN
knnknn

22 dknn

E
1

AN
knn

22 dknn

; ln N. ~8!

This trend is observed in Fig. 6~a!. A three-dimensional
drawing of the matrixP(k,knn) without aging can be found
in Fig. 6~c!. When aging is considered, the effect is rema
able, as is shown in Figs. 7~b! and 7~c!. On the one hand, the
probability distribution is changed from a power law to
bell-shaped type@Fig. 7~b!#; on the other hand, withk grow-
ing, this bell-shaped distribution is shifting translational
along the negative direction of the axis ofknn .

D. Average distance between nodes

Finally, we study another fundamental topological featu
of complex networks, the average node-node distance^d&.
Here the distance between two selected nodes is define
the number of edges along the shortest path connecting t
@1–3#. In our simulation we calculatêd& as ( i 51

N ^di&/N,
where^di& is the average distance between the nodei and the
rest of the network.

As is mentioned in the Introduction, many complex n
works show striking small-world properties and have a re
tively small value of̂ d& compared with their large size. Thi
effect is shared by many models, including the small-wo
model, the BA model and the random network. Howev
with the aging effect strong enough, it is imaginable th
each node could only be connected with those introdu
shortly before it. Thus we may probably have a chainl
structure, witĥ d& scaling linearly asN. In fact, as is shown
below, this depends on the choice of the decay factor.

~1! Whene2bt is applied, we obtain a chainlike structu
even with vanishingly smallb @b50.01 in Fig. 8~a!#, and^d&
increases linearly asN. However, a chainlike structure doe
not necessarily mean a large value of^d&. Here ^d& is still
relatively small compared withN. ~2! Whent2n is applied,
we observe a continuous transformation process that ca
roughly identified with three stages: The first stage is
small-world network with^d&; ln N @n51 in Fig. 8~b!#; in
the second stage the network is similar to a hypercubic
tice with ^d&;N1/D, where D is the Euclidean dimension
@n52 andD'2.73 in Fig. 8~c!#; finally, in the third stage, the
network evolves into a chainlike structure with^d&;N @Fig.
8~d!#. The difference between the two decay factors becom
more manifest when we take into consideration the posi
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of each node and plot̂di& as a function ofi. Figure 9~a!,
obtained with the decay factore20.01t, is just a sign of a
chainlike structure. By contrast, in Fig. 9~b! with the decay
factor t21, the nodes born earlier have shorter distance.

For each node, the probability that it is linked with
newly introduced node is proportional to its degree and
decay factor, and the structure of the generated networ
decided by such a competition. A major difference betwe
the two decay factors,e2bt and t2n, is that e2bt decays
much faster. Withe2bt, the probability that two temporally
distant nodes are connected is so small that a chain-
structure will be produced even with vanishingly smallb.
However, whent2n is chosen, the result of the competitio
depends on the parametern, and that is why we have ob
served a continuous transformation. Besides, it is worth m
tioning that actually the small-world property can be retain
with n in a remarkably large region.

Finally, it is worth mentioning that, from the observatio
of an exponential aging in the citation network and t
present model, we may predict a linear increase of the a
age distance between nodes~in the citation web! with the

FIG. 8. ~Color online! Average distance between nodes as
function of network sizeN with different decay factors:~a! f (t)
5e20.01t and ^d&;N, ~b! f (t)5t21.5 and ^d&; ln N, ~c! f (t)
5t22 and ^d&;N21/2.73, and ~c! f (t)5t23 and ^d&;N. The re-
sults are obtained withm52.

FIG. 9. ~Color online! The average distance between each giv
node in the network and all the other nodes, with the decay facto
~a! f (t)5e20.01t and ~b! f (t)5t21. HereN520 000 andm52.
1-7
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number of nodes in the network. This is against the comm
expectation of a ‘‘small-world behavior,’’ where a logarith
mic increase is observed, but it is certainly what follow
from our work. We hope this conclusion will stimulate fu
ther statistical measurements of citation networks.

IV. SUMMARY

In network evolution, aging is a universal effect: After a
nothing is perpetual. Here we find in citation networks th
the aging effect may be represented by an exponential d
factor,e2bt, while this particular measurement does not e
clude the possibility that other evolving networks may ha
different types of aging, for example, a power-law dec
which is also studied and compared. It has been found t
as soon as the preferential attachment is modified by su
factor, the produced network will be significantly tran
formed, besides the change of the degree distribution@11,12#.
In most cases we observe a continuous transformation
cess by tuning the decay factor, while there are also a
abrupt changes.~1! The network will be clustered even wit
infinite network size, and the clustering coefficient var
greatly with the intensity of the aging effect, i.e., it increas
with b linearly for small values ofb and decays exponen
tially for large values ofb. At the same time, the aging effec
may also result in~2! a hierarchical structure and~3! a dis-
assortative degree-degree correlation, and we observe
the corresponding scaling laws gradually emerge.~4! Gener-
ally the aging effect will increase the average node-node
tance in a network, but the result depends on the cho
decay factor and the intensity: If exponential decay is
plied, the network appears like a one-dimensional chain;
with power-law decay a transformation process is dem
strated, i.e., from a small-world, to a hypercubic lattice, a
to a one-dimensional chain finally.

Presently there are plenty of problems worthy of furth
investigation. For example, the influence of different choic
of the decay factor, hidden behind similar statistical prop
ties, on network structure. In the present research, the in
esting disparities revealed, concerning the clustering and
node distance, and probably with other aspects not yet id
tified, are believed to bear significant meaning for empiri
data acquisition. We hope that the measurement conduct
the present work, about the citation web, will be applied
more systems in future empirical studies. The effect of ag
on network structure observed in the present paper also
tifies a parallel study of the effect on network function@1#,
which includes topics such as efficiency, information a
disease transportation, error and attack tolerance, percol
features, etc.
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APPENDIX: CALCULATION OF THE ASYMPTOTIC
CLUSTERING COEFFICIENT

Because of the decay factore2bt, each node can only be
linked with a finite region, however large the whole netwo
may actually be. We can use this property to simplify t
calculation of the asymptotic clustering coefficient of a in
nitely large network.

As is described in Sec. II, the model network is built
the following. At each time step a single node is introduc
and then it is attached tom existing nodes. After the network
is built, we calculate the clustering coefficient of a random
selected node, which is numbered as node 0. We numbe
node introducedi time steps before it as node2 i and the
node introducedi time steps after it as node1 i . As a result
of the aging effect, we can assume that each node of
network has the same connectivity 2m. Thus, the probability
that two nodesi andj are connected can be written as~a node
cannot be linked with itself!

Plink~ i , j !5m
2m~e2bu i 2 j u2d i j !

(
l 51

`

2me2b l

5m
e2bu i 2 j u2d i j

(
l 51

`

e2b l

5m~eb21!~e2bu i 2 j u2d i j !. ~A1!

The clustering coefficient of the node 0,

C~b!5

(
i 52`

1`

(
j 52`

1`

Plink~0,i !Plink~0,j !Plink~ i , j !

2m~2m21!

5
m3~eb21!3

2m~2m21! F2(
i 51

`

(
j 51

`

e2b ie2b j~e2bu i 2 j u2d i j !

12(
i 51

`

(
j 51

`

e2b ie2b je2b( i 1 j )G
5

6m3

2m~2m21!
e2b

~12e2b!3

~12e22b!2
.

In fact, this value does not depend on which node we sel
and thus it can be taken as the clustering coefficient of
network. As is shown in Fig. 3, this approximate calculati
has a better fit with the simulation results for large values
b. Actually, the difference mainly comes from Eq.~A1!, in
which we do not consider the degree difference of the nod
1-8
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